爱生活
标题:
力要怎么分解?,力的分解怎么分
[打印本页]
作者:
123
时间:
2023-1-21 09:42
标题:
力要怎么分解?,力的分解怎么分
力要怎么分解?
力的分解 (resolution of a force) 将一个力化作等效的两个或两个以上的分力。分解的依据是力的平行四边形法则(见静力学公理)。这个问题一般可有无数组解,只有在另外附加足够条件的情况下,才能得到确定解。
力的分解是力的合成的逆运算,同样遵循平行四边形定则(三角形法则,很少用):把一个已知力作为平行四边形的对角线,那么与已知力共点的平行四边形的两条邻边就表示已知力的两个分力。然而,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形。
为此,在分解某个力时,常可采用以下两种方式:
①按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小。
②根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量。
关于第②种分解方法,我们将在这里重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解 将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果。所以,可将
力的分解到底是怎么分的
力的分解是力的合成的逆预算,是求一个已知力的两个分力.在对已知力进行分解时对两个分力的方向的确定,是根据力的作用效果进行的.在前一节力的合成学习的基础上,学生对于运算规律的掌握会比较迅速,而难在是对于如何根据力的效果去分解力,课本上列举两种情况进行分析,一个是水平面上物体受到斜向拉力的分解,一个是斜面上物体所收到的重力的分解,具有典型范例作用,教师在讲解时注意从以下方面详细分析: 1、对合力特征的描述,如例题1中的几个关键性描述语句:水平面、斜向上方、拉力 ,与水平方向成 角,关于重力以及地面对物体的弹力、摩擦力可以暂时不必讨论,以免分散学生的注意力. 2、合力产生的分力效果,可以让学生从日常现象入手(如下图所示).由于物体的重力,产生了两个力的效果,一是橡皮筋被拉伸,一是木杆压靠在墙面上,教师可以让学生利用铅笔、橡皮筋,用手代替墙面体会一下铅笔重力的两个分效果. 3、分力大小计算书写规范.在计算时可以提前向学生讲述一些正弦和余弦的知识. 二、关于力的正交分解的教法建议: 力的正交分解是一种比较简便的求解合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了
力的分解的分解法
研究对象受多个力,对其进行分析,有多种办法,正交分解法不失为一好办法,虽然比较简单题用它显得繁琐一些,但对初学者,一会儿这方法,一会儿那方法,不如都用正交分解法,在<高中>
可对付一大片力学题,以后熟练些了,自然别的方法也就会了。正交分解法 物体受到多个力作用时求其合力,可将各个力沿两个相互垂直的方向直行正交分解,然后再分别沿这两个方向求出合力,正交分解法是处理多个力作用问题的基本方法,值得注意的是,对方向选择时,尽可能使落在、轴上的力多;被分解的力尽可能是已知力。步骤为:
①先进行受力分析(这一点很重要).接着正确选择直角坐标系,一般选共点力的作用点为原点,水平方向或物体运动的加速度方向为X轴,使尽 量多的力在坐标轴上。
②正交分解各力,即分别将各力投影在坐标轴上,分别求出坐标轴上各力投影的合力。
Fx=F1x+F2x+…+Fnx Fy=F1y+F2y+…+Fny
③共点力合力的大小为F=√Fx2+√Fy2(根号下Fx的平方加根号下Fy的平方),合力方向与X轴夹角
tank=Fy/Fx(即求出tan值,在和已知的tan值比较,进而得知k的度数)
例:
已知:F1,F2为F的分力,F的角度为37,物体重力为G,动摩擦因数为0.5.
求: f的大小,加速度的大小
解:F
力的分解有几种方法?
什么是正交分解法?
物体受到多个力作用时求其合力,可将各个力沿两个相互垂直的方向直行正交分解,然后再分别沿这两个方向求出合力,正交分解法是处理多个力作用用问题的基本方法,值得注意的是,对方向选择时,尽可能使落在、轴上的力多;被分解的力尽可能是已知力。步骤为: ①正确选择直角坐标系,一般选共点力的作用点为原点,水平方向或物体运动的加速度方向为X轴,使尽量多的力在坐标轴上。 ②正交分解各力,即分别将各力投影在坐标轴上,分别求出坐标轴上各力投影的合力。 Fx=F1x+F2x+…+Fnx Fy=F1y+F2y+…+Fny ③共点力合力的大小为F=√Fx2=Fy2(根号下Fx的平方加根号下Fy的平方),合力方向与X轴夹角tank=Fy/Fx(即求出tan值,在和已知的tan值比较,进而得知k的度数)
欢迎光临 爱生活 (https://ish.ac.cn/)
Powered by Discuz! X3