爱生活

 找回密码
 立即注册
搜索
查看: 170|回复: 0
打印 上一主题 下一主题

如何理解函数的极限?,函数的极限怎么理解

[复制链接]

14万

主题

14万

帖子

-134万

积分

限制会员

跳转到指定楼层
楼主
发表于 2023-4-13 00:00:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

如何理解函数的极限?


主要是在分段处考察,内容:
1、在分段处是否有定义,定义是否连续,如果连续左右极限必然相等。
2、如果没有定义,考察函数的左右极限是否相等,如果相等,为可去间断点,否则,为不可去间断点。
例如间断点为x=a,左极限为lim(△x→0) [f(a-0+△x)-f(a-0)]/△x,用左端的函数计算。
右极限为lim(△x→0) [f(a+0+△x)-f(a+0)]/△x 用a点右边的函数计算。
求极限基本方法有:




1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。




2、无穷大根式减去无穷大根式时,分子有理化。






3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。



函数极限怎么理解?
为什么等于0和正∞。怎么理解怎么算的?需要中间思考步骤!



设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数
(无论它多么小),总存在正数
使得当x满足不等式
时,对应的函数值f(x)都满足不等式
那么常数A就叫做函数f(x)当
时的极限,记作

扩展资料
函数极限的四则运算法则
设f(x)和g(x)在自变量的同一变化过程中极限存在,则它们的和、差、积、商(作为分母的函数及其极限值不等于0)的极限也存在,并且极限值等于极限的和、差、积、商。非零常数乘以函数不改变函数极限的存在性。
相关定理:夹逼定理
设L(x)、f(x)、R(x)在自变量变化过程中的某去心邻域或某无穷邻域内满足L(x)≤f(x)≤R(x),且L(x)、R(x)在自变量的该变化过程中极限存在且相等,则f(x)在该自变量的变化过程中极限也存在并且相等。



函数极限的一般理解是什么?


理解“函数极限的局部有界性”如下:
函数的局部有界性是指函数在极限点的邻域内有界,而在整个定义域上并不一定有界。数列其实可以看作是一个离散的函数,但数列求极限是总是令N趋向于无穷大。
而函数求极限则不然,因此数列的有界性是对于整个数列而言的。更直白的说,数列如果存在极限,那么它前面的有限项必然都是有限的数,所以肯定有界。而后面的无限多项由于极限的存在性所以也一定有界的。但是函数不具有这样的特性。


简介:
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。



函数极限的概念


函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。
函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。


方法
①利用函数连续性:

(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)

②恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。


第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

③通过已知极限

特别是两个重要极限需要牢记。

④采用洛必达法则求极限。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。






上一篇:怎么和女生相亲微信聊天?,怎么和微信相亲女聊天
下一篇:疫情期海外留学生怎么回国,在外留学生怎么回国
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

站点统计|手机版|小黑屋|爱生活 ( 蜀ICP备20006951号 )|

 

快速回复 返回顶部 返回列表