|
如何判断出的收敛,帮帮忙?
因为ln2>ln1=0,所以这是一个正项级数,且:
所以这是一个等比的正项级数,且公比为:q=ln2=0.693147<1。
因为等比级数在q<1时就是收敛的,因此原级数收敛。
怎样判断函数是否收敛
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。
2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。
3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替
4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。
拓展资料:
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
收敛数列
令{}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|-
高数函数,怎么判断它收敛的?
图" class="ikqb_img_alink">
收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的.函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值.有界函数:对于定义域中的任意一个值,相应的函数值都在一个区间内变化(也就是函数值的绝对值总小于某一个固定值),那函数就是有界的.收敛函数一定有界(上下界分别就是函数的最大和最小值)但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2
|
上一篇:新闻稿件一般是怎样发布的?,新闻报道怎么发布
下一篇:手机看电影时怎样截取片段?,怎么剪辑电影片段手机
|