矩阵的模怎么计算?,矩阵的模怎么计算公式
矩阵的模怎么计算?
任意矩阵的模,是能计算的,模就是只有n阶方阵可以计算,或者n阶行列式......书上定义已经明确的说明,所以计算模,要先看清楚是不是方阵。不是方阵,是不会出现模这种算法的,因为模只针对方阵。
一个矩阵的特征值可能是复数,在复数的情况下就会有模。n×n的方块矩阵A的一个特征值和对应特征向量是满足Aμ=λμ的标量以及非零向量。其中v为特征向量,λ为特征值。A的所有特征值的全体,叫做A的谱,记为λ(A)。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵含义
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
什么是矩阵的模
矩阵的模是怎么定义的?
模,又称为范数。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。
扩展资料:
矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性: 。所以矩阵范数通常也称为相容范数。
如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。
注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。
参考资料:
矩阵在什么情况下等于零?矩阵的模怎么算?
矩阵永远不会等于0,但有零矩阵,就是矩阵中所有元素都是0的矩阵.方阵的行列式可为0,条件是方阵的轶小于方阵的行数.|A|是指方阵的行列式.但也可定义矩阵中所有元素的平方和开根号为矩阵的模
三阶矩阵的模怎么求
标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差