如何提公因式,公因式怎么提
如何提公因式
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的;取相同的多项式,且多项式的次数取最低的。
把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,确定公因式的方法:
1、公因式的系数是多项式各项系数的最大公约数。
2、字母取多项式各项中都含有的相同的字母。
3、相同字母的指数取各项中最小的一个,即最低次幂。
扩展资料
提公因式的注意点:
1、把多项式各项都含有的相同字母(或因式)的最低次幂的积作为公因式的因式。
2、用提公因式法分解因式的关键是准确找出多项式各项的公因式。
3、如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
4、用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。
参考资料来源:
怎样提取公因式
怎样提取公因式请问怎样提取公因式
具体方法: 当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的;取相同的多项式,且多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 例题: (x-y)^2+y-x =(y-x)^2+(y-x)=(y-x+1)(y-x) 确定公因式的方法: ★确定公因式的一般步骤 (1)如果多项式是第一项系数是负数时,应把公因式的符号“-"提取。 (2)取多项式各项系数的最大公约数为公因数的系数。 (3)把多项式各项都含有的相同字母(或因式)的最低次幂的积作为公因式的因式。 上述步骤不是绝对的,当第一项是正数时步骤(1)可省略。 注意: 如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如: -9x^2+6xy= -3x(3x+2y)的错误。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。