数理统计中似然函数怎么求啊,似然函数怎么求
数理统计中似然函数怎么求啊
考虑投掷一枚硬币的实验。假如已知投出的硬币正面朝上的概率是
便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25:
从另一个角度上说,给定“投两次都是正面朝上”的观测,则硬币正面朝上的概率为0.5的似然是
尽管这并不表示当观测到两次正面朝上时
的“概率”0.25。如果考虑
那么似然函数的值会变大
这说明,如果参数的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设0.5 时更大。也就是说,参数取成0.6 要比取成0.5 更有说服力,更为“合理”。
总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。
扩展资料:数理统计中似然函数的分布类型:
1、离散型概率分布
假定一个关于参数θ、具有离散型概率分布P的随机变量X,则在给定X的输出x时,参数θ的似然函数可表示为
需要注意的是,此处并非条件概率,因为θ不(总)是随机变量。
2、连续型概率分布
假定一个关于参数θ、具有连续概率密度函数f的随机变量X,则在给定X的输出x时,参数θ的似然函数
似然函数公式
统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。
似然函数在推断统计学(Statisticalinference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。
但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变量的输出结果;似然则用来描述已知随机变量输出结果时,未知参数的可能取值。
例如,对于“一枚正反对称的硬币上抛十次”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对于“一枚硬币上抛十次”,我们则可以问,这枚硬币正反面对称的“似然”程度是多少。
离散型随机变量怎么求似然函数
这里的似然函数为啥是这样啊
这是一个三项分布。
样本值是0,1,2,0,2,1,对应的概率分别是theta,(1-2theta),theta,theta,theta,(1-2theta)。
似然函数就是得到这个样本的概率,由于每次抽样独立,所以把这几个概率乘起来就是得到这个样本的概率了,也就是似然函数。
给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。
似然函数的主要用法在于比较它相对取值,虽然这个数值本身不具备任何含义。例如,考虑一组样本,当其输出固定时,这组样本的某个未知参数往往会倾向于等于某个特定值,而不是随便的其他数,此时,似然函数是最大化的。
扩展资料:
似然比检验是一种寻求检验方法的一般法则。其基本思想如下: 设由n个观察值X1,X2,…,Xn组成的随机样本来自密度函数为f(X; θ)的总体,其中θ为未知参数。
要检验的无效假设是H0: θ=θ0,备择假设是H1:θ≠θ0,检验水准为α。为此,求似然函数在θ=θ0处的值与在θ=θ(极大点)处的值(即极大值)之比,记作λ,可以知道:
(1) 两似然函数值之比值λ只是样本观察值的函数,不包含任何未知参数。
(2) 0≤λ≤1,因为似然函数值不会为负,且λ的分母为似然函数的极大值,不会小于