在频率分布直方图中如何求中位数,频率分布直方图的中位数怎么求
在频率分布直方图中如何求中位数
有公式吗
在样本中,有50%的个体小于或者等于中位数,同时也有50%的个体大于或者等于中位数,所以,在频率分布直方图中,在中位数的左边和右边直方图的面积是相等的。从而我们可以根据这个来估算出中位数的大小值。
每个矩形的面积就是这组数据的频率。把每个矩形的面积从左加起,加到接近0.5时(没超过)用0.5减去之前加得的面积,再用减得的数值除以下一组的面积,再乘以组距,再加上在与上一组之间的数就得到了中位数。
比如:有4组数据:[0,10),[10,20),[20,30),[30,40],频率分别为0.1、0.2、0.3、0.4,把前两组频率加起来,得0.3(再加第三组就超过0.5了),再0.5-0.3=0.2,再0.2/0.3约=0.67,再0.67*10=6.7最后20+6.7=26.7
扩展资料:
一、频率分布直方图的运用:
频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。它主要是为了将我们获取的数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。
分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征。当数据在100以内时,一般分5~12组为宜。
从频率分布直方图可以估计出的几个数据:
1、众数:频率分布直方图中最高矩形的底边
频率分布直方图中位数的公式是什么?
中位数=x+0.5-(s1-s2-……-sn)/h 其中x表示中位数所在的那个方格的前边界数,例如这个方格表示在(15~18)那么x表示15,括号里面表示在这个方格前面的所有方格的面积,也就是频率,h表示中位数所在的方格的高。
频率分布直方图 纵轴表示频数/组距,横轴表示各组组距,若求某一组的频率,就用纵轴的频率/组距*横轴的组距,即得该组频率。
小长方形的面积=组距*(频数/组距)=频数
扩展资料在直角坐标系中,横轴表示样本数据的连续可取数值,按数据的最小值和最大值把样本数据分为m组,使最大值和最小值落在开区间(a,b)内,a略小于样本数据的最小值,b略大于样本数据的最大值。组距为d=(b-a)/m,各数据组的边界范围按左闭右开区间,如[a,a+d),[a+d,a+2d),……[a+(m-1)d,b)。
纵轴表示频率除以组距(落在各组样本数据的个数称为频数,频数除以样本总个数为频率)的值,以频率和组距的商为高、组距为底的矩形在直角坐标系上来表示,由此画成的统计图叫做频率分布直方图。
频率分布直方图里的频数,平均数,众数,中位数怎么求.
中位数就是频率分布直方图面积的一半所对应的值
众数就是频率最高的中间值
平均数则是每组频率的中间值乘频数再相加
若x1,x2,x3.xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度.
频率分布直方图中位数众数平均数怎么算?
1、众数:在频率分布直方图中,用面积最大的矩形的横轴中点对应的数来估计众数(最高矩形的横坐标中点)。
2、平均数:在频率分布直方图中,利用每个小矩形的面积乘以小矩形底边中点的横坐标之和来估计平均数。
其他介绍
用样本的数字特征估计总体的数字特征
1、众数:在一组数据中,出现次数最多的数称为众数。
2、中位数:在按大小顺序排列的一组数据中,当一组数有奇数个时,居于中间的数称为中位数,当一组数据有偶数个是,居于中间两数的平均数称为中位数。
3、平均数:是指一组数据的算术平均数。