相遇问题的解题技巧是什么?,相遇问题怎么解
相遇问题的解题技巧是什么?
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
扩展资料:
行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。
但归纳起来,不管是“一个物体的运动”还是“多个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。
相遇问题公式
相遇问题的公式:
相遇路程=速度和×相遇时间。
相遇时间=相遇路程÷速度和。
速度和=相遇路程÷相遇时间。
追及问题的公式:
追及距离=速度差×追及时间。
追及时间=追及距离÷速度差。
速度差=追及距离÷追及时间。
走路、行车等匀速运动中的速度、时间和路程三者关系的应用题叫行程问题。行程问题根据题目的内容、性质所需要解答案的问题,又分为相遇问题、追及问题、火车过桥问题等。
解答各类行程问题的基础,要掌握速度、时间和路程三种量之间的关系:
路程=速度×时间。
时间=路程÷速度。
速度=路程÷时间。
相遇问题的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:
速度和×相遇时间=路程。
路程÷速度和=相遇。
时间速度÷相遇时间=速度和。
速度和-速度甲=速度乙。
怎样解相遇问题?
相遇问题是行程问题的一种,题目一般特点是:两个物体以不同的速度从两地同时出发,“相向而行”,若干小时后相遇。
解答相遇问题的基本关系式是:
速度和×相遇时间=路程
根据这个关系式又可推导出:
路程÷速度和=相遇时间
路程÷相遇时间=速度和
例1:南京到上海的水路长392千米,甲、乙两船从两港同时开出,相对而行。从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解:392÷(28+21)
=392÷49
=8(小时)
答:经过8小时两船相遇。
例2:甲、乙两辆汽车同时从A、B两地相对开出,甲车每小时行42.5千米,乙车每小时行38千米,4小时后,甲、乙两车还相距35.5千米,求A、B两地距离。
解:(42.5+38)×4+35.5
=80.5×4+35.5
=322+35.5
=357.5(千米)
答:A、B两地相距357.5千米。
例3:南京到北京的铁路长1157千米。一列快车在某日22时30分从南京开往北京,每小时行68千米。同日,一列慢车在19时从北京开往南京。已知两车在第二天早晨7时30分相遇,求慢车每小时行的千米数。
分析:先求出两车开出到相遇各行了多少时间,再求出慢车行的路程,慢车的速度就可求出。
解:(1)快车从出发到与慢车相遇
相遇问题是怎么个解法呢?
解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答。但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,本文介绍几种特殊的思维方法。
一、抓住两个数量差并采用对应的思维方法
例1 小李从A城到B城,速度是5千米/小时。小兰从B城到A城,速度是4千米/小时。两人同时出发,结果在离A、B两城的中点1千米的地方相遇,求A、B两城间的距离?
分析与解:这道题的条件与问题如图(1)所示。要求A、B两城的距离,关键是求出相遇时间。因路程是未知的,所以用路程÷(李速+兰速)求相遇时间有一定的困难。抓住题设中隐含的两个数量差,即小李与小兰的速度差:5千米/小时-4千米/小时=1千米/小时;相遇时小李与小兰的路差:1千米×2=2千米。再将其对应起来思维:正因为小李每小时比小兰多走1千米,所以小李多走2千米所花去的时间2小时不正是小李、小兰相遇的时间吗?因此,求A、B两地距离的综合算式是:(5+4)×[1×2÷(5-4)]=18(千米)。
二、突出不变量并采用整体的思维方法
例2 C、D两地间的公路长96千米,小张骑自行车自C往D,小王骑摩托车自D