如何求原函数的反函数,原函数怎么求反函数
如何求原函数的反函数
反函数定义
般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
反函数性质
1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数.).奇函数不一定存在反函数.被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数. (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】. (8)反函数是相互的 (9)定义域、值域
求反函数的一般步骤
求反函数的一般步骤如下:
1、从原函数式子中解出x用y表示。
2、对换x,y。
3、标明反函数的定义域。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x) 。反函数y=f ﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
反函数的性质:
(1)函数f(x)与它的反函数图象关于y=x直线对称。
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(3)一个函数与它的反函数在相应区间上单调性一致。
反函数的求法。 已知一个函数,如何求这个函数的反函数。
求反函数的步骤:
1、反解方程,将x看成未知数,y看成已知数,解出x的值。
2、将这个式子中的x,y兑换位置,就得到反函数的解析式。
3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。
则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。
如何求已知函数的反函数?
如何求已知函数的反函数?还有问题,都在图片里了。请帮忙解答,谢谢!
求一个函数的反函数方法分三步
反解x,
对换x,y
求定义域。反函数的定义域是原函数的值域
y=2^x -----x=log2(y)-----y=log2(x) (x>0)
函数与反函数的图像关于y=x对称