爱生活

 找回密码
 立即注册
搜索
查看: 135|回复: 0
打印 上一主题 下一主题

速算法是什么,速算是怎么算的啊

[复制链接]

14万

主题

14万

帖子

-134万

积分

限制会员

跳转到指定楼层
楼主
发表于 2022-9-25 02:57:01 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

速算法是什么


指利用数与数之间的特殊关系进行较快的加减乘除运算。这种运算方法称为速算法,心算法。
  1速算一: 快心算,速算
  速算一: 快心算-----真正与小学数学教材同步的教学模式
  快心算是目前唯一不借助任何实物进行简便运算的方法,既不用练算盘,也不用扳手指,更不用棋盘。
  快心算教材的编排和难度是紧扣小学数学大纲并于初中代数接轨,比小学课本更简便的一门速算。简化了笔算,加强了口算。简单,易学,趣味性强,小学生通过短时间培训后,多位数加,减,乘,除,不列竖式,直接可以写出答数。
  快心算的奇特效果
  三年级以上任意多位数的乘除加减全部学完.
  二年级多位数的加减,两位数的乘法和一位数的除法.
  一年级,多位数的加减.
  幼儿园中,大班学会多位数加减法 为学龄前幼儿量身定做的,提前渡过小学口算这一关。小孩在幼儿园学习快心算对以后上小学有帮助
  孩子们做作业不再用草稿纸,看算直接写答案.
  快心算”有别于“珠心算”“手脑算”。西安教师牛宏伟发明的快心算,(牛宏伟老师获得中华人民共和国国家知识产权局颁发的专利证书。专利号;ZL2008301174275.受中华人民共和国专利法的专利保护。) 主要是通过教材中的一定




速算方法


金华速算
金华全脑速算的运算原理是通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,所以能达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
例题
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
金华全脑速算乘法运算部分原理
令A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0+A×D×C0/C+B×D
= AB×C0+A×D×10+B×D
= AB×CD+A0×D+B×D
= AB×C0+(A0+B)×D
= AB×C0+AB×D
= AB×(C0+D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396

速算的方法与技巧


全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数



上一篇:地图上怎么添加自己的店铺位置,怎么添加地图店位置
下一篇:肉滑的制作,怎么做肉滑
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

站点统计|手机版|小黑屋|爱生活 ( 蜀ICP备20006951号 )|

 

快速回复 返回顶部 返回列表