爱生活

 找回密码
 立即注册
搜索
查看: 138|回复: 0
打印 上一主题 下一主题

线性方程组有哪些解法,线性方程怎么解

[复制链接]

14万

主题

14万

帖子

-134万

积分

限制会员

跳转到指定楼层
楼主
发表于 2022-10-11 12:00:01 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

线性方程组有哪些解法


第一种 消元法 ,此法 最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况.
第二种 克拉姆法则,如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式,就是解;
第三种 逆矩阵法,同样要求系数矩阵可逆,直接建立AX=b与线性方程组的关系,X=A^-1.*b就是解
第四种 增光矩阵法,利用增广矩阵的性质(A,b)通过线性行变换,化为简约形式,确定自由变量,(各行中第一个非零元对应的未知数除外余下的就是自由变量),对自由变量进行赋值,求出其它未知数,然后写成基础解析的形式,最后写出通解.
这种方法需要先判别:增广矩阵的秩是否等于系数矩阵的秩,相等且小于未知数个数,则无穷多解;等于未知数个数,唯一解.秩不想等,无解.
第五种 计算机编程,随便用个软件,譬如Matlab,输入密令,
目前这5中教为适用,适合一切齐次或者非齐次线性方程组.


线性方程组有哪些解法


对于线性方程组,分为其次的和非其次的!以下我分别就两种方程组给出其解法
首先,对于其次方程组,我们通常就是列出其系数行列式,一步一步化成行阶梯型,再化成行最简型。然后求解,一般基础解系里面解向量的个数等于未知数的个数减去系数行列式的秩。
其次,对于非其次方程组,我们的解法是通解加特解得方法,所谓通解,就是先解出非其次方程组所对应其次方程组的基础解系,然后再随便找一个特解满足非其次方程组即可,然后把它们相加组合起来,就是非其次方程组的解
对于你提出的,是有无解得问题,要相对简单,只需要考察系数行列式的秩和其增广矩阵的秩是否相等,如果相等才有解,如果不相等,就没有解了,





线性方程组的通解方法是什么?


非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。非齐次线性方程组是常数项不全为零的线性方程组。
若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。

扩展资料:
对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r消元法求解。
当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。





上一篇:十一个月大的宝宝晚上睡觉总是哭怎么回事,十一个月宝宝半夜哭闹怎么办
下一篇:小米平板无法开机怎么办?,小米平板怎么开机不了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

站点统计|手机版|小黑屋|爱生活 ( 蜀ICP备20006951号 )|

 

快速回复 返回顶部 返回列表